
VaPiD: A Rapid Vanishing Point Detector via Learned Optimizers

Shichen Liu1,2, Yichao Zhou3, and Yajie Zhao2

1University of Southern California
2USC Institute for Creative Technologies

3University of California, Berkeley
{lshichen,zhao}@ict.usc.edu zyc@berkeley.edu

Abstract

Being able to infer 3D structures from 2D images with
geometric principles, vanishing points have been a well-
recognized concept in 3D vision research. It has been
widely used in autonomous driving, SLAM, and AR/VR for
applications including road direction estimation, camera
calibration, and camera pose estimation. Existing vanish-
ing point detection methods often need to trade off between
robustness, precision, and inference speed. In this paper,
we introduce VaPiD, a novel neural network-based rapid
Vanishing Point Detector that achieves unprecedented effi-
ciency with learned vanishing point optimizers. The core
of our method contains two components: a vanishing point
proposal network that gives a set of vanishing point propos-
als as coarse estimations; and a neural vanishing point op-
timizer that iteratively optimizes the positions of the vanish-
ing point proposals to achieve high-precision levels. Exten-
sive experiments on both synthetic and real-world datasets
show that our method provides competitive, if not better,
performance as compared to the previous state-of-the-art
vanishing point detection approaches, while being signifi-
cantly faster.

1. Introduction
Vanishing points are defined as the intersection points of

3D parallel lines when projected onto a 2D image. By pro-
viding geometry-based cues to infer the 3D structures, they
underpin a variety of applications, such as camera calibra-
tion [21, 7], facade detection [25], 3D reconstruction [15],
3D scene structure analysis [16, 39], 3D lifting of lines [30],
SLAM [43], and autonomous driving [22].

Efforts have been made on vanishing point detection in
the past decades. Traditionally, vanishing points are de-
tected in two stages. In the first stage, a line detection
algorithm, such as probabilistic hough transformation [18]
or LSD [38], is used to extract a set of line segments. In
the second stage, a line clustering algorithm [26] or a vot-

Figure 1: We propose a novel vanishing point detection net-
work VaPiD, which runs in real-time with high accuracy.
Speed-accuracy curves compare with state-of-the-art meth-
ods on the SU3 dataset [46]. Dotted horizontal lines labeled
with nε represent the nth smallest angle errors that numer-
ically can be represented by 32-bit floating point numbers
when computing the angle between two normalized direc-
tion vectors, i.e., arccos〈d1,d2〉.

ing procedure [3] is used to estimate the final positions of
vanishing points from detected line segments. The main
weakness of this pipeline is that the extracted lines might be
noisy, leading to spurious results after clustering or voting
when there are too many outliers. To make algorithms more
robust, priors of the underlying scenes can be used, such
as Manhattan worlds [4] or Atlanta worlds [31], which are
common in man-made environments. Nevertheless, addi-
tional assumptions complicate the problem setting, and the
algorithms might not work well when these hard assump-
tions do not hold.

Recent CNN-based deep learning approaches [6, 5, 42,
41, 19, 45] have demonstrated the robustness of the data-
driven approach. In particular, NeurVPS [45] provides a
framework to detect vanishing points in an end-to-end fash-
ion without relying on external heuristic line detectors. It
proposes conic convolution to exploit the geometric prop-

erties of vanishing points by enforcing the feature extrac-
tion and aggregation along the structural lines of vanishing
point candidates. This approach achieves satisfactory per-
formance, but it is inefficient as it requires evaluating all
possible vanishing points in an image (1FPS is reported in
[45]). In contrast, most vanishing point applications must
be run online in order to be useful in a practical setting.

To this end, we introduce VaPiD, a novel end-to-end
rapid vanishing point detector that significantly boosts the
model efficiency using learned optimizers. VaPiD consists
of two components: (1) a vanishing point proposal network
(VPPN) that takes an image and returns a set of vanishing
point proposals. It harnesses a computation sharing scheme
to efficiently process dense vanishing point anchors; (2) a
neural vanishing point optimizer (NVPO) that takes each
proposal as input and optimizes for its position with a neu-
ral network in an iterative fashion. In each iteration, it re-
fines the vanishing points by regressing the residuals and
updating the estimates. Our approach can be considered as
learning to optimize. Compared to the previous coarse-to-
fine method in [45], our optimizing scheme avoids enumer-
ating all possible vanishing point candidate positions, which
largely improves the inference speed.

We comprehensively evaluate our method on four pub-
lic datasets including one synthetic dataset and three real-
world datasets. VaPiD significantly outperforms previous
works in terms of the efficiency, while achieving compet-
itive, if not better, accuracy compared with the baselines.
Remarkably, on the synthetic dataset, the cosine of the me-
dian angle error (0.088°) is close to the machine epsilon
of 32-bit floating-point numbers1, which indicates that Va-
PiD pushes the detection accuracy to the limit of numerical
numbers. With fewer refinement iterations, VaPiD runs at
26 frames per second while maintaining a median angle er-
ror of 0.145° for 512×512 images with 3 vanishing points.

2. Related Work
Vanishing Point Detection. Early works represent van-
ishing points with unit vectors on a sphere (the Gaussian
sphere), which reveals the link between the 2D vanish-
ing point and the 3D line direction [3, 29]. Modern line-
based vanishing point detection approaches first detect the
line segments, which are then used to cluster vanishing
points [40, 26, 27, 20]. Among them, LSD [38] with J-
linkage [35, 10] is probably one of the most widely used al-
gorithms. These methods work well on images with strong
line signals, but are not robust to noises and outliers [32].
Therefore, structure constraints such as orthogonality prop-
erties are often used to increase the robustness. For exam-
ple, the “Manhattan world” assumes three mutually orthog-

1The cosine error is the dot product of the direction represented by
predicted vanishing points and ground truth vanishing points. It limits how
accurate you can represent a vanishing point with floating-point numbers.

onal vanishing directions [8, 28, 24]. Similarly, under the
“Atlanta world” assumption [31], vanishing points are de-
tected in a common horizon line [2, 23, 40].

Recently, we have seen the success of CNN-based re-
search on vanishing point detection. Chang et al. [6] detects
vanishing points in the image frame by classifying over im-
age patches. Zhai et al. [41] learns the prior of the hori-
zon and its associated vanishing points in human-made en-
vironments. Kluger et al. [19] projects lines in the image to
the Gaussian sphere and regresses directly on the spherical
image. Zhou et al. [45] introduces the conic convolutions
that can learn the vanishing point-related geometry features.
Our approach also builds upon conic convolutions. We pro-
pose a computation sharing scheme that enables conic con-
volutions to process large-scale vanishing points.

Learning to Optimize. Using neural network layers to
mimic the steps of optimization algorithms has shown to be
effective in many computer vision tasks. Gregor et al. [14]
first explored training a neural network as the approxima-
tion of an optimizer for sparse coding. This idea has been
further applied to image super-resolution [9], novel view
synthesis [11], and optical flow [36]. We follow this line of
works and train a neural network that iteratively estimates
the residuals and updates the vanishing points. In contrast to
previous works, we target at the problem of vanishing point
detection and our network optimizes the vanishing points in
the semi-spherical space.

3. Method

3.1. Background

Geometry Representation of Vanishing Points. We
adopt the Gaussian sphere representation of vanishing
points [3]. The position of a vanishing point v =
[vx, vy]T ∈ R2 in an image encodes a set of parallel 3D
lines with direction d = [vx−cx, vy−cy, f]T ∈ R3, where
[cx, cy]T ∈ R2 is the optical center and f is the focal length
of the camera. Representing vanishing points with d instead
of v avoids the degenerate cases where the projected lines
are parallel in 2D. In addition, we are now able to use the
angle between two 3D unit vectors as the distance between
two vanishing points. In this paper, we use both 3D d ∈ R3

and its 2D counterpart of v ∈ R2 to represent a vanishing
point.

Conic Convolutions. The conic convolution [45] is de-
signed to extract point related features. A conic convolu-
tion takes a feature map and a convolution center (the co-
ordinates of the vanishing point candidates) as input, and
outputs another feature map. Mathametically, a 3×3 conic

Backbone Vanishing point proposalInput image Recurrent vanishing point optimizer

PNMS
T iters

Conv Efficient conic conv Conic conv

v0
1

v0
2

v0
n

Output vanishing points

Anchor

vT
n

vT
1

vT
2

Figure 2: The architecture of our proposed VaPiD. It incorporates three major components: (1) a backbone network for
feature extraction from the input image; (2) a vanishing point proposal network (VPPN) to generate reliable vanishing point
proposals with efficient conic convolutions; (3) a weight sharing neural vanishing point optimizer (NVPO) to refine each
vanishing point proposal to achieve high accuracy. Note that our network is trained in an end-to-end fashion.

convolution operator “∗” is defined as:

(F ∗w)(p |v)

=

1∑
i=−1

1∑
j=−1

w(i, j) · F
(
p +Rv−p ·

[
i
j

])
,

(1)

where F is the input feature map, w is a 3×3 trainable con-
volution filter, p ∈ R2 is the coordinates of the output pixel,
v is the convolution center that is set to be the candidate po-
sitions of vanishing points, and Rv−p is a 2D rotation ma-
trix that rotates the x-axis to the direction of v−p. In other
words, conic convolution is a structured convolution opera-
tor that always rotates the filters towards the vanishing point
v regardless of the output pixel coordinates p. Intuitively,
conic convolution can be seen as a way to check whether
there are enough lines shooting from a vanishing point.

3.2. Overview

Fig. 2 illustrates our overall workflow. VaPiD takes an
image as input and predicts the associated vanishing points.
Specifically, a backbone network first extracts the feature
map from the input image. Our vanishing point proposal
network (VPPN) then generates a set of coarse vanishing
point proposals using the feature map. Finally, the neural
vanishing point optimizer (NVPO) optimizes each proposal
individually for a fixed number of iterations. We introduce
the designs of VPPN and NVPO in Sec. 3.3 and Sec. 3.4,
respectively. In the end, we describe the loss functions for
training both modules in Sec. 3.5.

3.3. Vanishing Point Proposals

The goal of the vanishing point proposal network
(VPPN) is to produce a set of vanishing point proposals ef-
ficiently. Let {vi}Ni=1 be an anchor point grid of sizeN on a
unit sphere. The vanishing point proposal network classifies

each anchor point to determine whether there is a vanishing
point around it. We employ a point-based non-maximum
suppression (PNMS) on the score map of the anchor grid to
generate the final candidates.

Efficient Conic Convolutions. Given a vanishing point
anchor vi, the conic convolution centered at vi relates the
vanishing point to its line features. However, the conic con-
volution needs to process each vanishing point anchor sep-
arately, which is slow when N is large. To solve this prob-
lem, we propose the efficient conic convolution operator to
quickly compute N feature maps by reusing some internal
results with approximations.

Our key observation is that the rotation matrix R(·) in
Equ. 1 is the only factor that varies regarding the same pixel
p. For a dense anchor point grid, the computation is re-
dundant as multiple anchors may share similar rotation an-
gles. Therefore, our method first approximates R(v−p) by
K rotation matrices {Rk}K−1k=0 , where Rk is a 2D rotation
matrix that rotates 2πk

K rad. We then pre-compute the fea-
ture map Gk by convolving the input feature map with the
kernel rotated by R−1k . After that, we can efficiently ap-
proximate the vanilla conic convolutions by retrieving the
features from the pre-computed feature maps with the clos-
est rotation angles. This process can be described with the
following formulas:

(F ∗w)(p |v) (2)

=

1∑
i=−1

1∑
j=−1

w(i, j) · F
(
p +Rv−p ·

[
i
j

])
(3)

≈
1∑

i=−1

1∑
j=−1

w(i, j) · F
(
p + Rkv,p ·

[
i
j

])
(4)

(a) Confidence score map (b) Vanishing point proposals w/ PNMS

Figure 3: Illustration of point-based non-maximum sup-
pression (PNMS). (a) The confidence score map of a dense
vanishing point anchor grid predicted by our efficient conic
convolution networks. Higher scores are visualized as solid
spheres with larger radius. (b) Top-3 vanishing point pro-
posals after PNMS.

≈
1∑

i=−1

1∑
j=−1

w

(
R−1kv,p

·
[
i
j

])
F
(
p +

[
i
j

])
(5)

≈
(
F ⊗ ROTATEKERNEL(w,R−1kv,p

)
)

(p) (6)
.
= Gkv,p(p),

where kv,p = arg maxk Tr(Rk · RTv−p) is the index of the
closest rotation matrix, ROTATEKERNEL(w,R−1kv,p

) rotates
the convolutional kernel w with 2D rotation matrix R−1kv,p

,
“⊗” is the symbol of a regular convolution, and {Gk}Kk=1 is
the set of pre-computed feature maps with 2D regular con-
volutions. Here, (2)-(3) is the definition of conic convolu-
tion, (3)-(4) is the step of rotation discretization, (4)-(5) is
integration by substitution, and (5)-(6) is according to the
definition of rotation and convolution. Once we obtain the
feature maps for all the anchor points, we pass them into
a fully connected layer with a Sigmoid activation to obtain
the classification scores.

It takes N times of network forwards for the vanilla
conic convolutions to compute the feature maps for a van-
ishing point set of sizeN , while the proposed efficient conic
convolutions only require K times network forwards fol-
lowed by a pooling operator that requires negligible compu-
tation costs, where K is the number of discretized rotation
matrices. We find that setting K = 64 � N can already
give good approximations. In addition, efficient conic con-
volution only requires regular 2D convolution instead of de-
formable convolutions as used in [45], which in practice is
much faster due to tremendous engineering efforts in mod-
ern deep learning frameworks.

Vanishing Point Non-maximum Suppression (PNMS).
The dense score maps tend to be locally smooth. To re-
move duplicated proposals, we adopt a point-based non-
maximum suppression (PNMS) approach, inspired by the

widely adopted NMS techniques in object detection [12].
PNMS keeps the vanishing points with the greatest scores
locally and suppresses its neighboring vanishing points
within an angle threshold Γ. Figure 3 illustrates the effect
of PNMS. After PNMS, we select the top-K ranked anchors
as our proposals.

3.4. Learning to Optimize Vanishing Points

The goal of the neural vanishing point optimizer (NVPO)
is to fine-tune the vanishing point positions starting from
the initial proposal d(0). Our NVPO emulates the process
of iterative optimization and produces a sequence of esti-
mates

{
d(1), . . . ,d(T)

}
. In each iteration, it uses the image

feature map and the current vanishing point position d(t)

to regress an update vector δ(t) = (δθ(t), δφ(t)) using the
conic convolution network [45]. It then applies the update
vector to the current vanishing point and obtains the next
estimate (as shown in Equ. (7)). For each vanishing point
proposal, we use T iterations. The network weights of the
NVPO are shared across all the refinement iteration. As we
only process a small number of vanishing points, we adopt
the vanilla conic convolutions in our NVPO. We provide the
network structure details in the supplementary materials.

We note that the update is applied in a local system de-
fined by the position of vanishing points to avoid the prob-
lem of Gimbal lock. We first write out d(t) using the spher-
ical coordinate and construct ∆(t) ∈ R3 from the regressed
vector δ(t):

d(t) =
[
cos θ(t) sinφ(t) sin θ(t) sinφ(t) cosφ(t)

]T
,

∆(t) =
[
cos δθ(t) sin δφ(t) sin δθ(t) sin δφ(t) cos δφ(t)

]T
.

We then define the local system (X ′, Y ′, Z′), where the Z′-
axis corresponds d(t) while keeping Z-axis lies in the Y ′Z′

plane. The update vector is then applied to the current estimate
in (X ′, Y ′, Z′). This process can be viewed as a rotation transfor-
mation:

d(t+1) = d(t) ⊕ δ(t) :=
[
e(t) d(t) × e(t) d(t)

]
·∆(t), (7)

where e(t) = [− sinφ(t), cosφ(t), 0]T . This process is illustrated
in Fig. 4. An important property of such update scheme is rota-
tional equivariant. If one rotates the vanishing points with respect
to the optical center, the refined vanishing points will rotate in the
same manner. This property is guaranteed by our method, as the
conic convolutions centered at the vanishing points are by nature
rotation invariant.

Although the NVPO still uses conic convolution to compute
the features, our approach is more efficient compared to NeurVPS
[45]. Specifically, NeurVPS samples candidate positions near the
current estimates and uses conic convolutional networks to de-
termine if each candidate is near a real vanishing point. Even
with a coarse-to-fine strategy, it still needs to forward the conic
convolutional networks 144 times per vanishing point in order to
reach high precision levels, which largely limits the model effi-
ciency. We instead adopt a “learning to optimize” methodology

X

Y

Z

X 0

Y 0

Z 0

(a) Local system (b) Update operator

�(t)

✓(t)

�(t)

d(t+1)d(t)

Figure 4: Illustration of our update operator. (a) Given the
camera system (X,Y, Z) and the current vanishing point
position d(t), we define the local system (X ′, Y ′, Z ′). (b)
We obtain the refined vanishing point d(t+1) by applying
the update vector ∆(t) in the local system.

and directly regress the residuals of the vanishing points with our
conic convolutional networks. Such a design greatly accelerates
the overall process. For instance, we can now achieve better per-
formance than NeurVPS with only a few network forwards. Al-
ternatively, our approach can be viewed as solving for equilibrium
points: our update formulation d(t+1) = d(t) ⊕ δ(t) = f(d(t))
can be viewed as a fixed point iteration method, where the function
f is learned to fit our objective.

3.5. Loss Functions
For training VPPN, we assign a binary class label for each

vanishing point anchor, where only the anchors with the closest
angle to a ground truth are assigned with positive labels. This
gives Lcls =

∑N
i=1 BCE(li, l

∗
i), where li is the classification

score for the i-th anchor and l∗i is the assigned label. For train-
ing NVPO, we sample M anchors around the ground truths as
the initial states and supervise NVPO with an angular loss be-
tween the estimates and the ground truths for each step Lref =∑M
i=1

∑T
t=1 arccos(|〈vti ,v∗i 〉|). We jointly train both modules

with the final loss L = Lcls +λLref , where λ is a trade-off hyper-
parameter.

4. Results
4.1. Datasets

We conduct empirical studies on the following datasets:
SU3 Wireframe [46]. SU3 Wireframe is a photo-realistic syn-
thetic urban scene dataset generated with a procedural building
generator. It contains 22,500 training images and 500 valida-
tion images. The dataset assumes “Manhattan world” scenes,
where each image has exactly three mutual perpendicular vanish-
ing points. The ground truths are calculated from the CAD mod-
els, which are accurate enough for a systematic investigation of
vanishing point detection.
Natural Scene [47]. Collected from AVA and Flickr, this dataset
contains images of natural scenes where the authors pick only one
dominant vanishing point as the ground truth. We adopt the data
split from [45] that divides the images into 2,000 training samples
and 275 test samples.
HoliCity [44]. HoliCity is a city-scale real-world dataset with rich

structural annotations. The ground truths are accurately aligned
with the CAD model of downtown London. There are various
numbers of vanishing points for each scene. We adopt the standard
split that contains 45,032 training samples and 2,504 validation
samples.
NYU-VP [20]. This dataset is manually labeled based on the NYU
Depth V2 dataset [33]. It contains 1,449 indoor images. While
most images show three ground truth vanishing points, it ranges
from one to eight. We follow [20] and split the dataset into 1,000
training samples, 224 validation samples, and 225 testing samples.

4.2. Experiment Setups
Evaluation Metrics. We evaluate our method using mean and
median angle errors. To better inspect our method under various
precision levels, we also make use of angle accuracy (AA) met-
rics [45], where AAα is defined as the area under the angle accu-
racy curve between [0, α] divided by α. For NYU-VP dataset, we
follow [20] and adopt the AUC metric.
Baselines. We compare our method against robust fitting methods
J-Linkage [10], T-Linkage [26], Sequential RANSAC [37], Multi-
X [1], MCT [27], and learning-based method CONSAC [20],
based on line segments extracted with LSD [38]. For vanishing
point detection methods, we compare our method against tradi-
tional methods VPDet [47] and Simon et al. [34]. For learning-
based vanishing point detection methods, we compare our method
against Zhai et al. [41], Kluger et al. [19], direct CNN regres-
sion and classification [45], and previous state-of-the-art method
NeurVPS [45].

4.3. Implementation Details
We implement our network in PyTorch. We resize the input

images to 512×512. For generating the vanishing point proposals,
we first uniformly sample an anchor grid of sizeN = 1, 024 using
Fibonacci lattice [13]. We then set the PNMS threshold Γ = 15°
and keep the top-K proposals if the dataset assumes a fixed number
of vanishing points K, otherwise K = 6. For vanishing point
refinement, we set the estimation cap S = 20°, and compute losses
for T = 8 refinement steps. We use Adam optimizer [17] with a
learning rate of 3×10−4 to train the network. We set the trade-off
parameter λ = 1.

4.4. Results on Synthetic Datasets
We show our results on SU3 Wireframe [46] in Tab. 1, and

plot the AA curves in Fig. 6. With a similar inference speed, Va-
PiD achieves an order of magnitude improvement over the naive
CNN classification and regression baselines. VaPiD also signifi-
cantly outperforms the traditional line-based J-Linkage clustering
method [10]. Note that the synthetic dataset contains many sharp
edges and long lines, which by nature favors the line-based de-
tectors. The improvement of the accuracy validates the efficacy
of geometry-inspired network designs such as conic convolutions
and efficient conic convolutions. We also observe that our method
runs 17 times faster than our strong baseline NeurVPS [45], while
achieving better accuracies on all metrics. This indicates that
our learning to optimize scheme can greatly improve the model
efficiency upon the coarse-to-fine enumerating strategy used in
NeurVPS. Remarkably, VaPiD is trained with angular metrics, but

(a) Ground truth (c) NeurVPS(b) VaPiD (d) J-Linkage (a) Ground truth (c) NeurVPS(b) VaPiD (d) J-Linkage

Figure 5: Qualitative comparison with baseline methods on SU3 Wireframe dataset [46]. Line group in the same color
indicates the same vanishing point. We highlight all prediction errors in red color. Better view in color.

achieves a median angle error of 0.089° with float32. This is be-
cause 1−cos(0.089°) ≈ 1.2×10−6, which is already close to the
machine epsilon of 32 bit floating point numbers ε ≈ 1.2× 10−7.
This fact indicates that VaPiD is able to push the detection preci-
sion close to the numerical precisions. This is also reflected in the
stepped curves at high precision levels (i.e. below 0.1°) in Fig. 6.

Qualitative Results. We provide the visual comparison of de-
tected vanishing points with NeurVPS [45] and J-Linkage [10] in
Figure 5. The detection errors are shown in red color. We ob-
serve that both the learning-based methods outperform the tradi-
tional method J-Linkage in prediction accuracy. Although the syn-
thetic scenes contain sharp edges and long lines, the performance
of J-Linkage is affected by clouds (second-row right panel), shad-
ows (second-row left panel), and occluded lines (third-row right
panel). Compared to NeurVPS, our method is more robust to oc-
clusion when one of the vanishing points is occluded (third-row
right panel). We believe this is benefited from our design of using
a dense vanishing point anchor grid as initial.

4.5. Results on Real-World Datasets

Comparisons on Natural Scene. We show the comparisons
on Natural Scene [47] in Tab. 2 and Fig. 7. Our method sig-
nificantly outperforms the naive CNN classification and regres-
sion baselines as well as the contour-based clustering algorithm
VPDet [47] in all metrics. It also outperforms the strong base-
line NeurVPS [45] in most of the metrics. We note that the
Natural Scene [47] is captured by cameras with different focal
lengths. Such data favors the enumeration-based methods over the
optimization-based methods, especially at a tighter angle thresh-
old (i.e. below 1°). Nonetheless, we highlight that for images with
one dominant vanishing point, VaPiD can run at real-time (43FPS)
while maintaining competitive performance.

AA.2° AA.5° AA1° Mean Median
CNN-reg 2.03 6.48 15.02 2.077° 1.481°
CNN-cls 2.17 9.10 23.71 1.766° 0.984°
J-Linkage [10] 27.89 48.07 62.34 3.888° 0.209°
NeurVPS [45] 47.59 74.26 86.35 0.147° 0.090°
VaPiD 48.33 74.79 86.66 0.145° 0.088°

Table 1: Comparisons of mean, median angle errors and the
angular accuracies of 0.2°, 0.5°, 1° with baseline methods
on SU3 dataset [46].

AA1° AA2° AA10° Mean Median
CNN-reg 2.4 9.9 58.8 5.09° 3.20°
CNN-cls 4.4 14.5 62.4 5.80° 2.79°
VPDet [47] 18.5 33.0 60.0 12.6° 1.56°
NeurVPS [45] 29.1 50.3 85.5 1.83° 0.87°
VaPiD 24.6 49.5 87.4 1.26° 0.87°

Table 2: Comparisons of mean, median angle errors and the
angular accuracies of 1°, 2°, 10° with baseline methods on
Natural Scene dataset [47].

AA1° AA2° AA10° Mean Median
NeurVPS [45] 18.2 31.7 62.1 8.32° 1.78°
VaPiD 22.1 39.6 75.4 3.00° 1.19°

Table 3: Comparisons of mean, median angle errors and the
angular accuracies of 1°, 2°, 10° with baseline methods on
HoliCity dataset [44].

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
Angle Difference (degree)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Pe
rc

en
ta

ge

AA Curves @ 0.5 on SU3 Wireframe

VaPiD
NeurVPS
LSD + J-Linkage
CNN Regression
CNN Classification

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
Angle Difference (degree)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Pe
rc

en
ta

ge

AA Curves @ 2 on SU3 Wireframe

VaPiD
NeurVPS
LSD + J-Linkage
CNN Regression
CNN Classification

10 100
Inference Time per Vanishing Point (millisecond)

0.1

0.3

1.0

3.0

M
ed

ia
n

A
ng

le
 E

rr
or

 (d
eg

re
e)

Speed-acc Comparisons on SU3 Wireframe

VaPiD
NeurVPS
LSD+J-Linkage
CNN Regression
CNN Classification

Figure 6: Angle accuracy curves and speed-accuracy comparisons for different methods on SU3 wireframe dataset [46].

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
Angle Difference (degree)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Pe
rc

en
ta

ge

AA Curves @ 2 on Natural Scene

VaPiD
NeurVPS
VPDet
CNN Regression
CNN Classification

0.0 1.2 2.4 3.6 4.8 6.0 7.2 8.4 9.6 10.8
Angle Difference (degree)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Pe
rc

en
ta

ge
AA Curves @ 12 on Natural Scene

VaPiD
NeurVPS
VPDet
CNN Regression
CNN Classification

100 1000
Inference Time per Vanishing Point (millisecond)

1.0

2.0

3.0

4.0

M
ed

ia
n

A
ng

le
 E

rr
or

 (d
eg

re
e)

Speed-acc Comparisons on Natural Scene

VaPiD
NeurVPS
VPDet
CNN Regression
CNN Classification

Figure 7: Angle accuracy curves and speed-accuracy comparisons for different methods on Natural Scene dataset [47]

Comparisons on HoliCity. We compare our method and
NeurVPS [45] on the challenging real-world dataset, HoliC-
ity [44]. The dataset mostly embraces the Atlanta world and con-
tains images with a variable number of vanishing points. Our
method outperforms NeurVPS on HoliCity. We think the gain
originates from more vanishing points proposal being retrieved.
This shows that our VPPN can adapt to complex scenes. Thanks
to our efficient conic convolutions, we can process a denser anchor
grid to produce fine-grained proposals.

Comparisons on NYU-VP. We compare against recent ro-
bust fitting methods CONSAC [20], T-Linkage [26], Sequential
RANSAC [37], Multi-X [1], MCT [27], and vanishing point de-
tection methods Simon et al. [34], Zhai et al. [41] and Kluger et
al. [19] on the NYU-VP dataset [20], and show the results in
Tab. 4. To fairly compare with the baselines, we follow [20] and
use the Hungarian method to match the predictions and the ground
truths. We find that in general the supervised methods perform
better than traditional methods, and our method outperforms all
baselines by a large margin. Compared to robust fitting methods,
VaPiD does not rely on prior line detectors. Instead, thanks to our
geometry-inspired structures, VaPiD can extract meaningful and
robust line features from raw images intrinsically via end-to-end
supervised learning. Compared to recent learning-based vanish-
ing point detectors, VaPiD can make use of rich geometry cues,
i.e. vanishing point-related line features, to accurately locate the
vanishing points.

Qualitative Results. We visualize our detected vanishing
points on HoliCity [44] in Figure 8, which shows that VaPiD is

AUC10° Supervised
Multi-X [1] † 41.3 no
MCT [27] † 47.0 no
Sequential RANSAC [37] † 53.6 no
T-Linkage [26] † 57.8 no
Kluger et al. [19] 61.7 yes
Simon et al. [34] 62.1 no
Zhai et al. [41] 63.0 yes
CONSAC [20] † 65.0 yes
VaPiD 69.1 yes

Table 4: Comparisons of AUC values at 10° with baseline
methods on NYU-VP dataset [20]. Supervised methods are
noted as “yes” in the last column. † Method requires addi-
tional line segment detector such as LSD [38].

able to generalize well to different types of scenes and is robust to
the perspective distortions. Thanks to the VPPN, our method can
handle the input images with a variable number of vanishing points
(2 for the first-row left panel, 3 for the first-row middle panel, and
4 for the second-row left panel) without relying on assumptions on
the scene. In some cases, our predictions are even more reasonable
than ground truths (orange in the second-row right panel).

4.6. Ablations
In this section, we show ablation studies to investigate the ef-

fect of each component in our model. All experiments are con-

Input Ground truthVaPiD result Input Ground truthVaPiD result Input Ground truthVaPiD result

Figure 8: Visualization of our vanishing point detection results on various types of scenes. For each of the vanishing points,
we visualize it using a group of 2D lines in the same color. Better view in color.

Rec2° Rec4° Rec6° Mean Median
VPPN-ECC 33.20 72.13 89.53 0.554° 0.101°
VPPN 56.20 95.67 99.00 0.146° 0.089°

Table 5: Ablation study on the efficient conic convolutions.
“VaPiD-ECC” denotes the baseline without using our pro-
posed efficient conic convolutions.

AA.1° AA.5° AA2° Mean Med. FPS
NVPO ×4 15.1 62.1 89.0 0.227° 0.145° 26
NVPO ×6 24.3 72.7 92.4 0.157° 0.096° 22
NVPO ×8 26.6 74.8 93.0 0.145° 0.088° 17
NVPO ×12 27.5 75.2 93.2 0.141° 0.086° 13
NVPO ×16 27.6 75.3 93.2 0.140° 0.086° 10
NVPO ×24 28.1 75.6 93.3 0.139° 0.085° 7

Table 6: Ablation study on the number of refinement steps.
(×T) indicates T refinement steps during the inference.

ducted on SU3 Wireframe [46], as we can eliminate the labeling
errors with the synthetic images.

The Effect of Efficient Conic Convolutions. The efficient
conic convolutions are the core of our VPPN. In Tab. 5, we demon-
strate the effectiveness of the efficient conic convolutions by in-
vestigating a variant of VPPN (VPPN-ECC) that replaces the ef-
ficient conic convolutions with vanilla conic convolutions but has
a similar computation cost. As the goal of our VPPN is to pin-
point all of the vanishing point proposals, we adopt a recall metric,
where Recα means the fraction of the ground truths that are suc-
cessfully retrieved by one of the vanishing point proposals within
the threshold of α. In Tab. 5, we observe that VPPN outperforms
the VPPN-ECC baseline on all metrics. We note that the average
closest neighbor angle of our anchor grid is 4.3°. We find that
VPPN achieves 99% recall with a threshold of 6°, whereas the
VPPN-ECC variant still struggles at 90%. This validates the ef-
ficiency of the computation sharing scheme in our efficient conic
convolutions.

Convergence of the Learned Optimizer. In the training
stage, we compute losses for a fixed refinement step of 8. To in-
vestigate the convergence of our NVPO, we apply different refine-
ment steps during inference and show the results in Tab. 6. As the
refinement step increases, it is clear that our NVPO gradually pro-
duces better vanishing point estimates, and can converge to a fixed
point. We also make two key observations: (1) our method runs at
nearly real-time (26FPS) with 4 refinement steps, yet is accurate
enough (with a 0.15° median error) for many downstream appli-
cations; (2) even with 24 refinement steps, where the performance
is saturated, our method still runs 7 times faster than thee previous
state-of-the-art method [45], while being more accurate.

5. Conclusion

This paper presents a novel neural network-based vanishing
points detection approach that achieves state-of-the-art perfor-
mance while being significantly faster than previous works. Our
method contains two designated modules: a novel vanishing points
proposal network and a neural vanishing point optimizer. Our key
insight is to use the computation sharing to accelerate massive con-
volution operations, and embrace a learning to optimize methodol-
ogy that progressively learns the residual of the objectives. In fu-
ture work, we will study how to combine VaPiD with downstream
applications such as scene understanding, camera calibration, and
camera pose estimation.

Acknowledgements

This research was sponsored by the Army Research Office
and was accomplished under Cooperative Agreement Number
W911NF-20-2-0053, and sponsored by the U.S. Army Research
Laboratory (ARL) under contract number W911NF-14-D-0005,
the CONIX Research Center, one of six centers in JUMP, a Semi-
conductor Research Corporation (SRC) program sponsored by
DARPA and in part by the ONR YIP grant N00014-17-S-FO14.
Statements and opinions expressed and content included do not
necessarily reflect the position or the policy of the Government,
and no official endorsement should be inferred.

References
[1] Daniel Barath and Jiri Matas. Multi-class model fitting by

energy minimization and mode-seeking. In Proceedings
of the European Conference on Computer Vision (ECCV),
pages 221–236, 2018. 5, 7

[2] Olga Barinova, Victor Lempitsky, Elena Tretiak, and Push-
meet Kohli. Geometric image parsing in man-made environ-
ments. In Proceedings of European conference on computer
vision, pages 57–70. Springer, 2010. 2

[3] Stephen T Barnard. Interpreting perspective images. Artifi-
cial intelligence, 21(4):435–462, 1983. 1, 2

[4] Jean-Charles Bazin and Marc Pollefeys. 3-line RANSAC
for orthogonal vanishing point detection. In 2012 IEEE/RSJ
International Conference on Intelligent Robots and Systems,
pages 4282–4287. IEEE, 2012. 1

[5] Ali Borji. Vanishing point detection with convolutional neu-
ral networks. arXiv preprint arXiv:1609.00967, 2016. 1

[6] Chin-Kai Chang, Jiaping Zhao, and Laurent Itti. Deepvp:
Deep learning for vanishing point detection on 1 million
street view images. In 2018 IEEE International Conference
on Robotics and Automation (ICRA), pages 1–8. IEEE, 2018.
1, 2

[7] Roberto Cipolla, Tom Drummond, and Duncan P Robertson.
Camera calibration from vanishing points in image of archi-
tectural scenes. In BMVC, volume 99, pages 382–391, 1999.
1

[8] James M Coughlan and Alan L Yuille. Manhattan world:
Compass direction from a single image by bayesian infer-
ence. In Proceedings of the seventh IEEE international con-
ference on computer vision, volume 2, pages 941–947. IEEE,
1999. 2

[9] Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou
Tang. Image super-resolution using deep convolutional net-
works. IEEE transactions on pattern analysis and machine
intelligence, 38(2):295–307, 2015. 2

[10] Chen Feng, Fei Deng, and Vineet R Kamat. Semi-automatic
3d reconstruction of piecewise planar building models from
single image. CONVR (Sendai:), 2010. 2, 5, 6

[11] John Flynn, Michael Broxton, Paul Debevec, Matthew Du-
Vall, Graham Fyffe, Ryan Overbeck, Noah Snavely, and
Richard Tucker. Deepview: View synthesis with learned
gradient descent. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 2367–
2376, 2019. 2

[12] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra
Malik. Rich feature hierarchies for accurate object detection
and semantic segmentation. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
580–587, 2014. 4

[13] Álvaro González. Measurement of areas on a sphere using
fibonacci and latitude–longitude lattices. Mathematical Geo-
sciences, 42(1):49, 2010. 5

[14] Karol Gregor and Yann LeCun. Learning fast approxima-
tions of sparse coding. In Proceedings of the 27th inter-
national conference on international conference on machine
learning, pages 399–406, 2010. 2

[15] Erwan Guillou, Daniel Meneveaux, Eric Maisel, and Kadi
Bouatouch. Using vanishing points for camera calibration
and coarse 3d reconstruction from a single image. The Visual
Computer, 16(7):396–410, 2000. 1

[16] Varsha Hedau, Derek Hoiem, and David Forsyth. Recover-
ing the spatial layout of cluttered rooms. In 2009 IEEE 12th
international conference on computer vision, pages 1849–
1856. IEEE, 2009. 1

[17] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 5

[18] Nahum Kiryati, Yuval Eldar, and Alfred M Bruckstein.
A probabilistic Hough transform. Pattern recognition,
24(4):303–316, 1991. 1

[19] Florian Kluger, Hanno Ackermann, Michael Ying Yang, and
Bodo Rosenhahn. Deep learning for vanishing point de-
tection using an inverse gnomonic projection. In German
Conference on Pattern Recognition, pages 17–28. Springer,
2017. 1, 2, 5, 7

[20] Florian Kluger, Eric Brachmann, Hanno Ackermann,
Carsten Rother, Michael Ying Yang, and Bodo Rosenhahn.
Consac: Robust multi-model fitting by conditional sample
consensus. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 4634–4643,
2020. 2, 5, 7

[21] Jana Košecká and Wei Zhang. Video compass. In European
conference on computer vision, pages 476–490. Springer,
2002. 1

[22] Seokju Lee, Junsik Kim, Jae Shin Yoon, Seunghak
Shin, Oleksandr Bailo, Namil Kim, Tae-Hee Lee, Hyun
Seok Hong, Seung-Hoon Han, and In So Kweon. Vpgnet:
Vanishing point guided network for lane and road marking
detection and recognition. In Proceedings of the IEEE inter-
national conference on computer vision, pages 1947–1955,
2017. 1

[23] José Lezama, Rafael Grompone von Gioi, Gregory Randall,
and Jean-Michel Morel. Finding vanishing points via point
alignments in image primal and dual domains. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 509–515, 2014. 2

[24] Haoang Li, Ji Zhao, Jean-Charles Bazin, Wen Chen, Zhe Liu,
and Yun-Hui Liu. Quasi-globally optimal and efficient van-
ishing point estimation in manhattan world. In Proceedings
of the IEEE International Conference on Computer Vision,
pages 1646–1654, 2019. 2

[25] Jingchen Liu and Yanxi Liu. Local regularity-driven city-
scale facade detection from aerial images. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 3778–3785, 2014. 1

[26] Luca Magri and Andrea Fusiello. T-Linkage: A continuous
relaxation of J-Linkage for multi-model fitting. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 3954–3961, 2014. 1, 2, 5, 7

[27] Luca Magri and Andrea Fusiello. Fitting multiple heteroge-
neous models by multi-class cascaded t-linkage. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 7460–7468, 2019. 2, 5, 7

[28] Faraz M Mirzaei and Stergios I Roumeliotis. Optimal esti-
mation of vanishing points in a manhattan world. In 2011
International Conference on Computer Vision, pages 2454–
2461. IEEE, 2011. 2

[29] Long Quan and Roger Mohr. Determining perspective struc-
tures using hierarchical hough transform. Pattern Recogni-
tion Letters, 9(4):279–286, 1989. 2

[30] Srikumar Ramalingam and Matthew Brand. Lifting 3d man-
hattan lines from a single image. In Proceedings of the IEEE
International Conference on Computer Vision, pages 497–
504, 2013. 1

[31] Grant Schindler and Frank Dellaert. Atlanta world: An
expectation maximization framework for simultaneous low-
level edge grouping and camera calibration in complex man-
made environments. In Proceedings of CVPR, volume 1.
IEEE, 2004. 1, 2

[32] Jefferey A Shufelt. Performance evaluation and analysis of
vanishing point detection techniques. IEEE transactions on
pattern analysis and machine intelligence, 21(3):282–288,
1999. 2

[33] Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob
Fergus. Indoor segmentation and support inference from
rgbd images. In European conference on computer vision,
pages 746–760. Springer, 2012. 5

[34] Gilles Simon, Antoine Fond, and Marie-Odile Berger.
A-contrario horizon-first vanishing point detection using
second-order grouping laws. In Proceedings of the Euro-
pean Conference on Computer Vision (ECCV), pages 318–
333, 2018. 5, 7

[35] Jean-Philippe Tardif. Non-iterative approach for fast and ac-
curate vanishing point detection. In 2009 IEEE 12th Inter-
national Conference on Computer Vision, pages 1250–1257.
IEEE, 2009. 2

[36] Zachary Teed and Jia Deng. Raft: Recurrent all-
pairs field transforms for optical flow. arXiv preprint
arXiv:2003.12039, 2020. 2

[37] Etienne Vincent and Robert Laganiére. Detecting planar ho-
mographies in an image pair. In ISPA 2001. Proceedings
of the 2nd International Symposium on Image and Signal
Processing and Analysis. In conjunction with 23rd Inter-
national Conference on Information Technology Interfaces
(IEEE Cat., pages 182–187. IEEE, 2001. 5, 7

[38] Rafael Grompone Von Gioi, Jeremie Jakubowicz, Jean-
Michel Morel, and Gregory Randall. LSD: A fast line
segment detector with a false detection control. IEEE
transactions on pattern analysis and machine intelligence,
32(4):722–732, 2008. 1, 2, 5, 7

[39] Rui Wang, David Geraghty, Kevin Matzen, Richard Szeliski,
and Jan-Michael Frahm. Vplnet: Deep single view normal
estimation with vanishing points and lines. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 689–698, 2020. 1

[40] Yiliang Xu, Sangmin Oh, and Anthony Hoogs. A minimum
error vanishing point detection approach for uncalibrated
monocular images of man-made environments. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 1376–1383, 2013. 2

[41] Menghua Zhai, Scott Workman, and Nathan Jacobs. Detect-
ing vanishing points using global image context in a non-
manhattan world. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 5657–
5665, 2016. 1, 2, 5, 7

[42] Xiaodan Zhang, Xinbo Gao, Wen Lu, Lihuo He, and Qi Liu.
Dominant vanishing point detection in the wild with appli-
cation in composition analysis. Neurocomputing, 311:260–
269, 2018. 1

[43] Huizhong Zhou, Danping Zou, Ling Pei, Rendong Ying,
Peilin Liu, and Wenxian Yu. Structslam: Visual slam with
building structure lines. IEEE Transactions on Vehicular
Technology, 64(4):1364–1375, 2015. 1

[44] Yichao Zhou, Jingwei Huang, Xili Dai, Linjie Luo, Zhili
Chen, and Yi Ma. HoliCity: A city-scale data platform
for learning holistic 3D structures, 2020. arXiv:2008.03286
[cs.CV]. 5, 6, 7

[45] Yichao Zhou, Haozhi Qi, Jingwei Huang, and Yi Ma.
Neurvps: Neural vanishing point scanning via conic convo-
lution. In Advances in Neural Information Processing Sys-
tems, pages 866–875, 2019. 1, 2, 4, 5, 6, 7, 8

[46] Yichao Zhou, Haozhi Qi, Yuexiang Zhai, Qi Sun, Zhili Chen,
Li-Yi Wei, and Yi Ma. Learning to reconstruct 3d manhattan
wireframes from a single image. In Proceedings of the IEEE
International Conference on Computer Vision, pages 7698–
7707, 2019. 1, 5, 6, 7, 8

[47] Zihan Zhou, Farshid Farhat, and James Z Wang. Detecting
dominant vanishing points in natural scenes with application
to composition-sensitive image retrieval. IEEE Transactions
on Multimedia, 19(12):2651–2665, 2017. 5, 6, 7

